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One-loop corrected thermodynamics of the extremal and nonextremal spinning
Banados-Teitelboim-Zanelli black hole
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We consider the one-loop corrected geometry and thermodynamics of a rotating BTZ black hole by way of
a dimensionally reduced dilaton model. The analysis begins with a comprehensive study of the non-extremal
solution after which two different methods are invoked to study the extremal case. The first approach considers
the extremal limit of the non-extremal calculations, whereas the second treatment is based on the following
conjecture: extremal and non-extremal black holes are qualitatively distinct entities. We show that only the
latter method yields regularity and consistency at the one-loop level. This is suggestive of a generalized third
law of thermodynamics that forbids continuous evolution from non-extremal to extremal black hole geom-
etries.
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[. INTRODUCTION imaginary time sector. Hence, there is no method for fixing
the Euclidean time periodicitywhich is equivalent to the
Nearly 30 years have passed since Bekenstein and Hawkaverse black hole temperatiyeontrary to the non-extremal
ing conjectured the laws of black hole mechanics to be ircase[9]. Qualitatively, the arbitrary temperature can be in-
analogy with those of thermodynamifs]. This analogy is terpreted as a consequence of the third law of thermodynam-
now widely accepted as an actual physical relation ratheics (i-€., no system with a finite temperature can ever reach
than just a mathematical anomaly. This in large part is due td = 0), which prevents non-extremal black holes from evolv-
Hawking’s landmark discovery that black holes radiate theriNd into extremal ones andice versa An extremal black
mally [2]. One of the more important open issues in thishole must be free to radiate at any temperature so as to retain

regard is the microscopic source of black hole entrigly its extremal nature, regardless of incoming'radiation.
In the case of non-extremal black holes, the quantifying It has been further proposed that the arbitrary temperature

relations for the temperature and entropy are well estab'—mplles a vanishing entropy. This argument is based on

. - i . qualitative differencesin the Euclidean sectpbetween the
lished.T= rc/2m a_nd S=A/4, respectively, where denotes extremal and non-extremal topologies. The Euclidean topol-
the surface gravityA denotes the surface area of the outer

hori d all fund | h b - ogy of an extremal black hole is relatively trivial, and this
orizon and all fundamental constants have been set to Unittce otively eliminates the usual horizon contributiemhich
However, when extremal black holes are considefiesl,

o ; . accounts for the non-extremal entrof8}) to the Euclidean
charged or spinning black holes with a degenerate horizoBion. Note that the findings of various other works have
singularity, it is an entirely different matter. There is still N0 gjnce supported the Hawking-Teitelboim conjectir@—15.
consensus regarding extremal thermodynamics. In spite of the compelling nature of the above arguments,
Extremal black holes are often interpreted as a limitingthere is still significant opposition to this point of view.
case of non-extremal solutiofi4], and this viewpoint leads Trivedi [16] and Loranzet al. [17] have argued that stress
t0 Tex=0 and Sgu=Acx/4>0. However, Hawkinget al.  tensor regularity on the horizafin the free-falling observer
[5], Teitelboim[6] and others[7,8] have argued strongly frame will be violated unles,,=0. Meanwhile, the stron-
against this intuitive notion. The *“Hawking-Teitelboim gest case again§.,=0 has come from the calculations of
conjecture”—that extremal and non-extremal black holesStrominger and other8]. They considered certain classes
are qualitatively distinct objects—has profound influences orof weakly coupled string theor{for which massive string
thermodynamics. For instance, it has been arguedlifjats  states can be represented by extremal black hales used a
an arbitrary quantity. Quantitatively, this can be explained bystatistical procedure to generalg, = A.«/4, precisely. The
the double zero in the extremal metric at the horizon, whichsame result has been obtained elsewhere with arguments that
translates to no conical singularity in the Euclide@e., favor a well-defined extremal limit. These include Ghosh and
Mitra [19] and Kiefer and Louk$20] (quantizing the system
before extremizing as well as ZaslavskjR1] (confining the
*Current address: Department of Mathematics and Applied Mathblack hole to a finite cavity before extremizingdn still an-
ematics, University of Cape Town, Rondebosch 7701, Cape Townpther viewpoint, Wangt al.[22] have proposed that distinct

South Africa. Email address: joey@theory.uwinnipeg.ca; extremal solutiong"“Hawking’s” and “Zaslavskii's”) can
joey@cosmology.mth.uct.ac.za coexist in nature.
"Email address: gabor@theory.uwinnipeg.ca In this paper, we hope to gain further understanding into
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the thermodynamics of extremal black holes. The vehicle fothe steps, the reader is referred to the above citation for a
our investigations is a special dilaton model of gravity thatmore detailed discussion.

describes the (%1)-dimensional projection of a rotating  The initiating point of our formalism s
Banados-Teitelboim-Zanell(BTZ) black hole. The BTZ (2+1)-dimensional anti-de Sitter gravity. Along with the
black hole refers to solutions of (21)-dimensional anti—de classical action, we include a matter action that describes
Sitter gravity that were first documented by Banados, TeitelMinimally coupled, massless, quantized scalar fields. The
boim and Zanelli[23]. The reduction process to a dilaton complete action functiondlip to surface termscan be writ-
model is based on the work of Achucarro and Of#i2]. The  ten as follows:

BTZ model has sparked recent interest due to its profound

connections with string theory. That is, many of the black 1 2
holes pertaining to string theory have near-horizon geom- |(3)=—J d3x\—g® R(3)+—2
etries that can be expressed as BYZ&imple manifold 25]. 167G® !
Recently, it has been pointed out that the procedures of /C N
dimensional reduction and quantization do not necessarily 3 [ 3 (3)5 12
commute[26]. Moreover, there is a so-called “dimensional- - 167TG(3J d*xv-g 21 (V=R @

reduction anomaly”[27] which implies that renormalized

guantities in the unreduced theory cannot be simply obtained

by renormalizing and summing their dimensionally reducedwheref; denotes the matter fieldsl is a large integerG(®)
counterparts. Our interest in the present paper, however, is the 3 Newton constant;-2| 2 is the negative cosmo-
not necessarily to derive quantitatively accurate correctiontogical constant and’ is a coupling parameter that vanishes
to the BTZ black hole thermodynamics. It is to understandn the classical limit(i.e., as#—0).

qualitatively the difference between extremal and non- Axial symmetry can be imposed on this action by way of
extremal geometries. In this regard, the quantization of thehe following metric ansatg24]:

dimensionally reduced theory may be adequate. In any case,
in the context of (1)-dimensional dilaton gravity, the
dimensional-reduction anomaly can be considered as incon-
sequential.

The remainder of the paper proceeds as follows. In Seayhere u,»={0,1}, « is an arbitrary constant of dimension
II, we consider the non-extremal geometry, including the CaHength,AM is a vector gauge fieldy is a scalar fieldthe
culation of back-reaction effects to the first perturbative or-“dilaton”) and all fields are functions of onlyx?,x}
der. Section Ill continues the non-extremal study with the:{t,x}_ This reduction process results in the f0||owing (]_
evaluation of one-loop thermodynamics by way of a Euclid-+ 1)-dilaton model:
ean action approad®,28,29. In Sec. IV, we investigate the
extremal limit by applying a limiting procedure to the results 1
of the prior two sections. Section V considers an alternative _ 2y [~ —2_ T 2w
method for extremal calculations that reflects the topological I j d x\/_g¢>(R+2I 4(ZS FEF
differences between the extremal and non-extremal geom- N
etries. This method is similar to the approach taken by Buric 2 2
and Radovanovi€¢13] in the context of Reissner-Nordstrom _Kf d X\/__g¢21 (V)7
black holes. Section VI contains a summary of our findings
along with a brief discussion. ) )
Note that all calculations are with respect to the Hartle-Where we have set=8G® without loss of generality. The
Hawking vacuum statg30]. This state can be regarded as field-strength™ tensorF ,,=d,A,—d,A, is known to be
describing an eternal black hole in thermal equilibrium ordirectly related to the angular momentum of a rotating BTZ
“box."” stant curvature gravity with coupling to both an Abelian

Although this Introduction has emphasized extremal blackgauge field and conformally invariant matter fields.
holes, the non-extremal results have merit on their own. With ~ Since the action is ultimately significant as the exponent
this in mind, we make note of other studiggd] that have In & path integral, it is possible to “integrate out” the matter

considered the one-loop corrected thermodynamics of thfelds and then consider the vacuum linfiite., f;—0). In
BTZ black hole. this event, the resultant “effective action” can &t least

partially derived in conformally invariant matter theories be-
cause of its exploitable relation to the trace conformal
Il NON-EXTREMAL GEOMETRY anomaly[33]. For the special case of conformally invariant
matter in two spacetime dimensions, the effective action can
Before proceeding on with the formal discussion, we notebe derived exactly up to terms that are conformally invariant
that the analytical techniques of this paper are based on [84]. For the dilaton model of interest, we fifdssuming
previous one-loop study of generic dilaton gravit$2]. thatN>1 and the black hole is massive when compared to
Since the current treatment goes rather quickly over some dhe Planck scale

ds?®)=g,, dx“dx"+ ¢*(ado+A,dx*)?, 2

()
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1 3 1 respectively, where
| :ICL_ICJ dZX\/—g[RER— ag(Vd))z(ER—ln /J,Z)

T/.LVE_IC ZVMVV(lﬂ_G |n(¢)+X)_(V#XVV¢

-6In(¢)R|, 4

+V .0V, 00— 9,,{20[ =6 In(¢) + x]
wherel ¢, is the left-most integral in Eq3), £ has been
appropriately rescalethow, X~N#%) and w is an arbitrary

3
—g*PV XVt + gz( y—Inu?)[2V ,¢V ¢
parameter that arises out of renormalization procedi3&s

The precise forms of the functional coefficiefits this case,
3/¢? and 6 In¢) depend upon the form of dilaton-matter —g,w(Vd))z]}, (1)
coupling that arises out of the reduction process.
It should be pointed out that the conformally invariant _ _3 2 5 ” 5
portion of the effective action, which is described by the D=6K{¢ (VO (y—Inpu’)+g*"V, [ (4
In u? term in Eq.(4), is incomplete as shown. This portion —InudV,d]— ¢ 'R} (12

cannot be found in a closed form, but it can be approximated

by an expansiotiin powers of curvaturneof which we have
only included the leading-order terfl85]. Recently, non-

Note thatT,, can be identified with the quantum stress ten-
sor.

local terms of this expansion, which appear to be relevantto The “Maxwell” field equation (10) can be trivially inte-

the perturbative order of Eq4), have been calculatd®6].

grated to yield

Because of their non-local nature, the incorporation of such

terms into our formalism is by no means a straightforward 1 e ]
process. Consequently, for the sake of simplicity, we have F’”=|— —_— ? (13
omitted these terms in the current analysis. This issue is fur- V=9

ther addressed in the final section.

It is convenient to re-express the effective action in anVheree”” is the Levi-Civitasymbol andJ is an integration

equivalent local form as follows:

I :ICL_]Cf dZX\/__g
3
G

where ¢ and y are a pair of auxiliary scalar fieltishat are
constrained according to the following equations:

(p+x)R+9*"V 4V x

(V)X (y—Inpu?)—6In($)R|, ©)

Uy=R, (6)

3
Ux=R- ?(V@z- @)

By varying the effective actiofb) with respect to the metric,
dilaton and Abelian gauge field, we obtain

2 1
_Zvﬂvv¢+2gﬂvm¢_ I_Zg,uv(b_ Z(3g,uVFaﬁFaﬁ

_4gaﬁF,uuzFVB)¢3:T,uV! (8)

2 3 ey
R+I—2—Z¢F FW=D, 9
V. (F#*¢3)=0, (10)

Auxiliary fields of an analogous form were first used in H&f7]
in the context of spherically symmetric gravity.

constant that can be identified with the Abelian charge ob-
servable(i.e., quantized angular momentunthe above re-
sult inspires the definition of an “effective potential”
V,(p)=1"2(2¢—3I%¢ %), which leads to the remaining
field equationg8,9) taking on the following compact forms:

_ZVMVV¢+29MVDd)_g,uvv\](d)):-rp,yi (14)
r+ Mg 15
+ w— . (15

It is instructive to first consider the classicdl£0) so-
lution. A prior work has demonstrated how to obtain the
classical solution in a static gauge for a wide class of dilaton
models[38]. For reduced BTZ gravity, this solution can be
expressed as follows:

X
boL=1, (16)
12]
(AdcL=— 22 (17)
ds?=—gc (X)d2+gcl(x)dx?, (18)
X2 J22
QCL(X):|—2—|M+W1 (19

where we have assumédithout loss of generalitya time-
like gauge vector ani¥ is a constant parameter that can be
identified with the Arnowitt-Deser-MisngiADM) mass ob-
servable. It is useful to note thR:, = —g¢, (where primes
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indicate differentiation with respect t&) and gc (x)= vacuum statg30]. Such conditions restrict the analysis to
—|k#|2, wherek“=1(\/—g) 1e*"d,¢ is a Killing vector for  solutions that are periodic in Euclideére., imaginary time
the classical field equations. when on a spatial manifold extending from the outer horizon
For subsequent calculations, it is convenient to re-expres® a fixed outer boundarly [9].
gcL(X) in the following form: Let us first consider solving E¢6) for . The appropriate
solution can be found by way of a special mg®]: the
1 classical Euclidean geomet(in a static gaugeconformally
T 22\ (22
Jeu(X)= 2x2(X Xo) (X" =X7), (20 mapped to the geometry of a “disk.” Significantly, the disk
geometry can be interpreted as the Rindler coordinate de-
where scription of the Hartle-Hawking state for a flat spacetime
2 [33]. On the basis of Eq€6),(18), such a map can be suit-
x2= §[M +IM2= 3717, (21) ably described by
" ge(X)(idt) 2+ gclt(x)dxe=e" @[ 22d 9>+ dZ], (30)
2 _ 1M —JM2=32/|2
XT3 [M= M7= J%17]. (22 where the disk coordinates are confined te @<2= and

0=<z=<L,. Solving for (z(x)), we find
The positive root ofx?/x? locates the classical outer/inner

event horizon. Since we have restricted considerations to 47 (L dX BeL

black hole solutiongand non-extremal ones until Sec.)|V H(x)=—Ingc(X)— lg—f Joi¥) nNo— )
the phase space of observables is restrictedviby0 and cLax gt z (31
M2>J?%/12, )

For a higher-order analysis, it is necessary to introduce §nere g denotes the Euclidean time periodicity for the
suitable ansatz for describing the back-reaction effects on thg qical systenfi.e., 0<it<gc,).

classical geometry. Following a proposal by Froletal.
[29], we now express the quantum-corrected solution in tht?m
following manner:

We can determing/(x) by integrating Eq(7) and then
posing the constraint thag— « in the limit of minimal
dilaton-matter couplingfor which the effective action as-
b=doL=xI, (23) fctlzmes a “Polyakov-like” form[39]). This procedure leads

d?=— e2*Mg(x)dt2+ g~ H(x)dx?, (24

L dx J'th)d(ga(;() (32

9(x) =g (0 —Im(x), (25 X00=400 43 ISTES ]
where the fieldsn(x) and w(x) must vanish a&—0. Note

thatA.‘:(At)CL follows trivially, since we il into the stress tensdil1), we obtain the following one-loop
coupling between the matter and Abelian sectors. exOressions:
By substituting the above ansatz into the field equations, P '

we find that Eq(15) and the off-diagonal component of Eq.

By substituting the classical solutiofi6),(18),(31),(32)

2
(14) are both identically vanishing. After some simplifica- t:£ r N2 "o 16m 9o )
tion, the “surviving” field equations are found to be T JeL (9L~ 49cder B2, +6 X2 (29cL=Xdeu)
—e?egm’ =Ty, (26) 2 4qr (Ldx
—39—C2L 2+IngeL+ —f —+InY2)
m 2 X Berx el
——+|—w’=TXX. (27)
9 N 127Tf><dxgc,_ 33
If these expressions are truncated at the one-loop Ilgee] Berlxy x2 |
at first order ink), then we obtain the elegant results
2 2
m'=-T,, (28 o K167, 8 +3%(m
“ge| B2, (9cu) % cideL 2 JeL
I
w'=5—(T=Ty. (29) 4m (Ldx 127 [xdx
29cL +—] —+In YZ) - x| (34)
BeLtx 9L cLtxy X2

Next in this study, we explicitly formulate the auxiliary
fields ¢(x) and x(x). Since we are ultimately deriving one-
loop expressions, it is sufficient to express these fields in 2The x=x, integration limit (besides being an intuitive choice
terms of the classical geometry. Furthermore, the choice ofan be uniquely fixed by constraining the curvatBro be regular
boundary conditions should reflect the Hartle-Hawkingon the horizon.
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whereY=u B¢ /27L, can be regarded as an arbitrary pa-andmg is an integration constant that can be absorlvéth-
rameter. out loss of generalityinto the classical madd. Next, let us
When on the constraint surface, the Euclidean time periinvoke the conventiom(L)=0 and define a functior (x)
odicity must be suitably fixed to ensure the horizon regularin accordance witlw(x) = Kl[w (L) — w (x) ]. Then the sub-
ity of the Euclidean geometri.e., to eliminate any conical stitution of Eqs.(33),(34) into Eq.(29) ultimately yields
singularity or deficit angle[9]. On this basis, we can explic-
itly evaluate the on-shell value @, by matching the clas-
sical solution with a conical geometry,
geL(X)(idt)2+gal(x)dx>=22d#?*+H(z)dZ (35) w(X)=— : + Zﬂ
- “ X (G X)) (%)
(where 0= 0<27 andz=0 at x=X,), and then enforcing 5 o ) ) )
H(0)=1. This process yields A (XoT3X7) +Xo(X5—5%)X

Xo(X5—X7) (X*=X7)

A 271X,
Bo=——| =33 (36 X X=X X X+ X
Yeu X=X, Xo ™ Xi -8 : n( ! +8 ! In !
(Xotx))? \XHXo) " (xo—x;)® | XFXo
By substituting Eq(33) into Eq.(28), integrating and also s o o
incorporating Eqgs(20),(36), we find 3 ﬁln X=Xi| N (X+Xo) “(X==X7) Lo
X[ Xo \X+X [2%2 '
K X2+ x2 —Xi (39
m(Xx)=2—|2x—3 —=8x%; In| ——
|2 X X+X;
s o 2 Note thatm(x) andw(x) are both well-defined functions for
N 1 3 +3X0+Xi XX [ X [ XX Xo<X=L, thereby substantiating our choice of ansatz.
5| oX X 3\ %o L XFX; We next consider the quantum-corrected curvature. This
can be written aR=—e “[e “(e?“g)’]’ or, for a one-
(X+Xo)2(X2_Xi2) loop truncation,
+0 | |+mg, (37)
12x?
R=—g¢ +Im"—20"gc —3w'gg, - 40
where deL 0'gcL— 3w gc (40)
XN, L=x cinl —2°) £ iny2 (39)  Substituting the prior results fon(x) and (), evaluating
Xo \L+X L+Xo the derivatives and then simplifying, we obtain
2 2K 6 4
- _ 4 2,2y, 2 22 632 2y3 2 2 3
R W(X +3xgX) + ™ {244— XOX(XO X')+x0x4(x+xo)2(x2—xi2)2[x' Xg (3% + 6XX“+ 8XgX+ 4Xy)
—XIX2(BX5+ Bxx* + 5x2X3+ 8Xx3X2+ 1Ixax + 6X3) — x2X5(3x* — 4x x5 — 11x2x? — Bx3x + 3x4) + 3x2x°]
3 X; — X (X+X,)2(X2—x?)
— 4 24 2\2 2,29 ZF i 0 i
+ < [3x = (g X)X = xox(] XoIn XX, 2.2 +0|f, (41
|
which is also a well-defined quantity throughout the relevant 13X, | BcL
manifold. AXo= 57 M(Xo) = ——M(X,). (42)
2(xg5—X{) 4w

Let us next consider the one-loop shift in the outer hori-
zonAX, . To determine this shift, we begin with a first-order
Taylor expansion of the functiog(x,+AX,); cf. Eq. (25). Note that a similar calculation is not viable at the inner ho-
After expanding and applying the horizon conditionsrizon, since the back-reaction ansatz has not been strictly
JeL(X) =9(X,t+AXo) =0 (with the latter valid being valid defined forx<x,. Furthermore, the shift ix; is expected to
to first ordey, we find be non-analytic inC [33].
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IIl. NON-EXTREMAL THERMODYNAMICS The Euclidean action can be written in a more convenient

. o form by way of Eq.(14). Let us first defineG,, as the
Our method of thermodynamic analysis is based on th : T : wy
well-known techniques of Gibbons and Hawkifig] and feft-hand side of this field equation and then express gth

others[28,29. This procedure can be summarized as foI—andTtt [which can be obtainédrom Eq. (11)] in terms of

lows. After analytically continuing to Euclidean spacetimemg ‘Etjgl? dzgwt;z:qi.ogitf)r l;nte%rggnevethgaﬁuggfrzr;i;nliem
and closing off the imaginary time direction, one finds that y parts, P

the path integral can be interpreted as a thermodynamic pa?—tat'c forms ofGy andTy to obtain

tition function Z. This partition function describes an en-

semble of black holes that are radiating at a temperature L oyt 2 s D s
B, where 8 corresponds to the periodicity of Euclidean :BL dx| e°(G— Ty —| 7e“g+4Ke “(e™g)
time. Furthermore, a semi-classical approximation has been a

shown to yield the relatiofi9] X " Xq
+2Ke“g ¢/+6In|— —-X +8 f dxe’R
In(2)=—1gs, 43
(2) os (43 « y 53
X |__K: y—61n I— + X —l—AAt. (45)
wherel o5 denotes the on-shell Euclidean action. Note for an X=X

q
on-shell system that3~ ! corresponds to the so-called

“Hawking temperature” of black hole radiatioh.

Let us reconsider the effective action of Ef). By trans-
forming to Euclidean spacetimge., rotatingt—it and re-
expressing all geometrical objects in terms of a positive
definite metrié) and also applying the static solution of Egs.
(23),(24), we obtain the following Euclidean form of the

Evidently, the above integrand vanishes on the constraint
surface up to a total divergence. It follows that the on-shell
Euclidean action reduces to just a surface expression, and
this is found to be

action: 2 X !
los=— P |—g+4IC(e2‘”g)’+21Cg Y6 In| 71 =X| [ |x-L
3 L X X X
|——fo dxe” I—R+VJ I— -K lﬁ—6|n I— +X R X X B‘J
q — 4 I—_’C Yy—61n I— +Xx —l—AAt. (46)
g L X=Xq
+gx'¢'—3p(¢—mﬂz) +3U dxe“’R)
3 Here, we have used(L)=g(x,)=0 and the perturbative
% f—lC[z//—GIn X +y —E—AAt, (44) ~ analogue of Eq(36):
[ I L |
where X, represents the quantum-corrected outer horizon, B=4m— (47)
AA=[A(L)—A((X,)] and note thaeR is a total deriva- 9 ey,
tive. So as to ensure a well-defined variational principle at
the boundaries of the system, we have included the appropri- We now recall the relation i) = — o5 and point out

ate surface terms in the third line of this expression. Excep{h
for the right-most(charge sectgrterm, this surface contribu-
tion is directly analogous to Gibbons and Hawking's “ex-
trinsic curvature term’19].°

at (on the basis of thermodynamic argumertise loga-
rithm of the partition function should ultimately take on the
following free energy form:

+S, (49)

In<Z>=—BL[E—En 7Y,

3Keep in mind that an observer atlocally measures an inverse
temperature of/ —gy[ X]B, that is, a “red-shifted” value of inverse

temperaturg28]. For anti—~de Sitter spacetimésnlike for asymp- wherep, is the fixed value of the inverse temperature at the

totically flat oneg, this red-shift factor diverges as— . . .
“Technically, the Abelian charge should also be complexified soouter boundary of the systerg,is the thermal energyy is

that A, dt remains invarianf28]. It is implied, however, that we an intrinsically conserved quantity,,, 1s the related chemi-

have already continued back to a real charge before presenting ar%‘?l potential andSis the entropy of the system. By compar-
result in this paper. ing the two expressions for A, we are able to make the

5Technically, we should also include an analogous horizon termfOIIOWIng identifications:

as well as a delta-function contribution from the curvat{46].

However, these horizon contributions are known to ultimately can-

cel in the final on-shell expressiof29], and hence are not pertinent 8t is helpful to first make the substitutiofl(y+ y)=D[2y
to the thermodynamics. —3¢ %(V)?]; cf. Egs.(6),(7).
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B (1 ) Before any further evaluation, two points should be clari-
E:_Zﬁ_ T9cL—m+2Kgc, fied:
- (i) The inverse boundary temperatygg is “red-shifted”
LK 4+61n X} ’] (49) from the inverse Hawking temperatug according to[ 28]
deu XL BL=gux=L1B=g(D) 5.

. (i) The Euclidean action is known to diverge as the outer

boundary tends to infinity9], which implies that the calcu-

lated energy will also diverge unless a suitable subtraction
' (50) procedure is invoked. The usual convention is to subtract off
o the energy contribution from the asymptotic geomégg§],

and so we define a subtracted energy accordindedg,

=E[g(L)]-E[9..], whereg..=L?/I%.

By substituting the prior geometrical formalism into Egs.

E[At(L)—At(XowL AXo)]. (51  (47),(49—(51) and also using binomial expansions where ap-
BL plicable, we obtain the following one-loop expressions:

X
T)*X

4
S= |—(Xo+ AXg) — 477]6{ Y—61In

1
'}’J:'_

T=p"t=pct+KlBct Kot XX+ X7 i 21 |+ 0 (L) (52)
=B "=PcL KBl N |+0|+tw ,
(Xe=%{)?Xq (xz=x))?L %o
L 1 ILm(L) K 3%,
Esub=2—2(1——2\/(L2—xg)(L2—x-2))+ +2-—| 13- —
| L V23 (L2-x3) | L
- 13%,L4— 2(3x2+ x?) L3 — 3o (X2 + X?) L2+ x3x? -
%oL2V(LZ=x3) (L2~ x?) ’
4mx, 4wk | , 5 X 5y L—x; 5 5 L+X,
S= I _xg—xiz x0+3xi+x—o(3xo+xi)ln C+x +2(3x5+x7)In X
L2—x2 xoL 2—x?
—(x§+3xi2)ln( > ;)—(xg—x?)ln(%)—(ng—x?) In| =——|+0|(, (54)
Xg—X; I [
- 12J(L2—x?) 1 1%L2 [ m(L) 2m(x,) =5
I 2L\ L2 x-x2

A brief comment regarding the one-loop entropy is ing(L)Es,,—M, which is the expected asymptotic behavior
order. Although the black hole entropy is normally a prop-of a quasi-localized energy in an anti-de Sitter spacetime
erty of the horizon, the above expressi&d) contains terms  [41]. A similar analysis for the chemical potential yields the

that depend on the “box sizel.. This paradoxical behavior limit Ja(L) 13/2x2 . which is the form of the rotational
can be attributed to the non-local nature of the auxiliary 9(L)ys— o’

fields ¢ and y: cf. Egs. (6),(7). Even at the horizon, these potential that might be anticipated for an axially symmetric

fields contain information with regard to the entire manifold. system .Of rad."{% and angular mqmen_tu@ Fmall_y, .'t can

Physically, thel-dependent terms can be attributed to a “hotbe readily verlflec[4] that the cIaSS|caI.I|m|t of satisfies the

thermal gas” that fills up the box. expected relgtlo_n between the Hawking temperature and the
For a check on validity, it is helpful to consider the clas- Surface gravity: i.e.T=«/2m. o

sical limit. First, we can re-express the classical entropy in A final thermodynamic consideration is the flux of ther-

the usual “Bekenstein-Hawking” fornii.e., S= A/4G®)) by mal radiation. This flux ha§ both an emission and absorption

making the following identification[cf. Eq. (2)]; A  component that are equal in magnitUdssuming the Hartle-

= 167TG(3)¢(X0) is the Circumference Of the outer horizon. HaWk|ng Staté. Furthermore, |t haS been ShO\MQ] that the

Let us next consider the behavior of the classical energy iflux components are equivalent to the diagonal components

the L— o limit. Under these conditions, it can be shown thatOf the stress tensor if these tensor components are expressed
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in terms of suitably defined null coordinates. In regard to thesponds to a coincidence in the classical horizbrs: x,, or
classical BTZ geometry, the appropriate coordinates can b&—1?M2. This limiting procedure leads to the following

defined as follows: results:
o [ X —t+f dx 56 2 x| X0
= gcL’ o” dou 58 m(x)= I_2 X x Xl X+—Xo
It can be readily shown that 1 6x2  Xg 2—x2
E 3X+7——3 21In Ix +InY2 ,
X
dcL
Tuu:Tvv: - T(Ti_ Ti) (57) (61)
Note thatT,/T,, represents the outgoing/incoming flux and @ (x)—quadratically divergent throughout the man(léozl)d,
Tu, can be obtained by “flipping” the sign in front of.
By incorporating Eqs(33),(34) into the above relation, W3t oK 2
we find the following results: - ® 4 T 24+ 42 (X2 4 xD)
12x* Ix x*
K (X_Xo)2 2 2
Tou=—5 ——5—1 3x3x8+6x,(3x3— 2x?)x° 3 X2 —x
21430 ° o( 3% = 2X) + F(3x2+x§)(x2—x§) 21n ™ °l+InY2|},
+ (3xE— 2x2x2+ Ax XA+ Axx2(2x2— x2) X3 63
2020992 232\ 2_ 103y Ay _ By b
T 3XoX (2X5 = 3X7)X = 10X X = 5XoX, Ax,— linearly divergent, (64)
= 3x3(X+Xo) (X2 —x)? ))((_'| % T=0+linearly divergent corrections, (65
o i
(X+X )2()(2—)(.2) E. .= X_§+m+ &(w
+In —— >+®H, (58) i e T N
KK (x2=x2)(x?—x?) AmXy _ _
W=7 s S= T + linearly divergent corrections, (67)
X
X[13x4+ 3(x2+ x?)x2— 3x2x7]. (59) 123
V3= er linearly divergent corrections, (68)
Note the divergence of these componentxas». An as- ©
ymptotically divergent flux is an expected outcome for an K (x—xg)?
anti—de Sitter theory. Since an asymptotic observer locally  T,,=—~ 4_2[ 3x5+ 6x0x5+5x§x4+4x§x3
measures a vanishing temperat(see footnote 3 it follows 2 1%
that she would detect an infinite flux of particles. 42 5 6 5
The above calculations provide a further check on our ~ 3XpX"— 10X — 5% = 3(X—Xo)
formalism. Christensen and Fulling3] have shown that en- 2—x2
forcing stress tensor regularity at the outer horizon in the X (X+X0)% 2 In(l—0 +InY? ] (69
free-falling frame(which is a necessary condition for de- X
scribing the Hartle-Hawking statéeads to a certain class of ) 5
constraints. These translate to tfwaitep horizon regularity T = E (X=Xo) “(X+Xo) [13x4+6x2x2—3x4]
of the following three quantities: w2 [4x6 o o
; (70
(1) Tyy, (i) Ty /gcr, (i) Tyu/ge, - (60)

With only a few exceptiongenergy, curvature and flix

The above expressions satisfy all three of these constraint¥e find the one-loop results to be poorly defined in the ex-
by virtue of thex—x, factor(s) in front. tremal limit. [Note thatm(x) has a logarithmic divergence at

IV. EXTREMAL LIMIT ) ) o o
By invoking a limiting procedure, it is implied that the extremal

It is straightforward to consider the extremal limit of the condition may be violated by radiation effects. That is, the one-loop
prior calculations. By definition, the extremal limit corre- corrected horizons may or may not coincide.
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the outer horizon.Furthermore, the stress tensor componentvhich has a unique solution of

T, fails the previously discussed regularity conditi@®),®

since we now havec, «(x—x,)2. One must conclude that C,=8x, and C,=0. (74)
the one-loop ansatz breaks down in this extremal limiting

case With regard to(iii), it is worth noting that the same

method can be applied to the non-extremal case. By impos-
ing horizon regularity on the non-extremal geometry, we find
that C,,=2(x3—x%)/x, and C,=2(3x3+x%)/x,, which is

In this section, we reconsider the extremal case by invokeonsistent with the prior results faf and y Egs.(31),(32).
ing an ansatzfor quantum correctionsthat presumes an This is not surprising, since the specification of a quantum
extremal solution from the beginning. There is ample justi-state(such as the Hartle-Hawking stathould uniquely de-
fication for such a procedure because of topological differtermine these Green’s functiop3].

V. ALTERNATIVE APPROACH TO EXTREMAL CASE

ences in the extremal and non-extremal soluti@s With the new ansatz being rigorously stipulated, we are
The methodology of this section is to repeat the priornow in a position to re-evaluate the extremal black hole
calculations with three fundamental differences: properties. These results are reported below with commen-

(i) In place of the classical metric function of H@0), we  tary wherever clarity is required:

now use )

x2 2
2X6 Z 42—

Xo

3
(o)
2 16

m(x)=mgy+2—
(X)=mo 2 X+ X

2
—(XT;") ) +®”, (75)

1
deL(X) = oz (X = X5)?, (7D

2 4
X2 X
where x,=I13M/2 and it is useful to remembags, (X,) +{ 3x+ Gf—x—g)[ln

=0. Note that the perturbative ansatz of E(&3)—(25) is
otherwise unaltered. where we have redefined
(ii) We now regard the Euclidean time periodic@gyas an
arbitrary quantity. This proposal is based on the following
observation: the extrem@Euclidean geometry has no coni- ©=in
cal singularity to be regulateld].
(iii) In solving for the auxiliary fieldsy andx, we employ  and m, is a constant that must be constrained to satisfy
a different method of imposing Hartle-Hawking boundary m(x,)=0. This constraint becomes evident when we con-
conditions. First, the associated field equatiB)s(7) can be  sider a first-order Taylor expansion@fx,+ Ax,). Note that

XoL 1
o

Xo

L+X, —2

directly integrated to yield no such method of fixingn, is apparent in the non-extremal
analysis:
l,, x dx
p(X)=—=Ingc + (72) 1 4 X 8 X2
g’ w(X)=——+ e 2
X X+X, (X+Xg)° 3 (X+Xp)
X'=—— ! gcL— +3j dx gCLl (73 —l—g[ln(M +®} (77)
9cL X Ix ’
where C,, and C, are integration constants of dimension X3 K[ x+xX, X
length.(Note that the second integration constang/inan be R(x)= —2|2—4 4|—[ 12 + 6—3(3x2+x§)
absorbed into Ip? without loss of generality, whereag X X X
only appears in the formalism as a derivativEhe next step 2 Xy (3X+Xo) (X2 +X3)
in this method is to constrain the pair of integration con- +8 4(x2+x0)+8 3
stants. For this purpose, we impdseiten horizon regularity X (X+Xo)
on three geometrical functionsa(x), w(x) and R(x). By 3
evaluating each of these quantitiéer arbitraryC, ) and + F(3X2+X§)(X2—X§)
locating the horizon singularities in the resultant expressions,
we are able to identify the following set of constraints: (X+Xg)?
S
(@ m—C,+C,=8x,0rC,=0,
(b) m—>C chc —24C jx,= — 128 and (a), o
(0 R—>ZC¢ 3C,=16x,, AXo=1—— =2Kl. (79
9cL

X=Xq

8t has been arguefiL7] that the same conditions apply to the For this calculation, we have considered a first-order Taylor
extremal case, in spite of the difficulties in formalizing an extremalexpansion ofg’(x,+ AX,), since such an expansion for
analogue to “Kruskal-like”(i.e., free-falling coordinates. leavesAx, as an indeterminate quantity. If we impose the
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one-loop constraing’ (x,+AX,) =0 (which is justified by
Hawking's conjecturg5]: an extremal black hole should re-
tain its nature, regardless of radiation eff¢aia the expan-
sion in question, then Eq79) follows:

T= B~ '—indeterminatéarbitrary by hypothesjs

2

£ Xg N ILm(L)+ KXq
sub— |2L L2—X(2) |L2(L2—X(2))
X[5L3—7x,L2—5x2L—x3], (81)
S=0. (82

This result of vanishing entropy occurs trivially, as the on-
shell Euclidean action is now linearly proportional@oFur-

PHYSICAL REVIEW D63 104005

prohibits continuous evolution from non-extremal to ex-
tremal states.

As an alternative to the limiting procedure, we have also
considered the extremal case from the following viewpoint:
extremal and non-extremal black holes are qualitatively dis-
tinct entities. In this alternative approach, the extremal solu-
tion was assumed from the beginning and horizon regularity
(in the one-loop geometfywas used to fix the boundary
conditions. With this procedure, we found all calculations to
be regular and all thermodynamic properti@gth one ex-
ception to be well defined. The one exception was tempera-
ture, which we justifiably regarded as an arbitrary quantity.
Other notable results were a vanishing entropy and the hori-
zon regularity of the stress tensor in the free-falling frame.
Although this analysis was limited to the study of BTZ black
holes, qualitatively similar outcomes have been obtained for
the Reissner-Nordstno case13].

thermore, the horizon surface tefmhich normally accounts
for the entropy must vanish according tg(xq)=9’(Xg)
=0 [cf. Eq. (45)]:

The arbitrary nature of the extremal temperature is some-
what unsettling inasmuch as the physical stat@ideast in
some sengea thermal one with non-vanishing asymptotic
radiation. To help clarify this apparent conflict, we take note
of recent findings by Liberagt al.[14]. They have consid-
ered an extremal Reissner-Nordstrdlack hole undergoing
collapse and demonstrated that spite of asymptotic par-
ticle production the temperature remains undefinable on ac-
count of a non-Planckian distribution. Although this result
does not apply directly to static BTZ black holes, it does
imply an intrinsic elusiveness in measuring the temperature
of an extremal black hole.

One may find it intuitively disturbing to assign a vanish-
ing entropy to a macroscopic object that emits radiation, al-
though a strong case for this has been recently put forth. Hod
[15] argued in favor ofS,,;=0 by appealing to the second
law of thermodynamics on the basis ofGedankerexperi-

Evidently, the approach of this section is a substantiament. However, before any definitive viewpoint can be
improvement over the prior limiting procedure. All proper- 'éached on this subject, we will ultimately require a clearer
ties (except arbitrary temperatyrare now well defined and Picture of what degrees of freedom underlie black hole en-
all local quantities are regular throughout the relevant manitropy. _ _ _
fold. Furthermore, the stress tensor satisfies the horizon regu- A couple of final technical notes regarding our results are
larity conditions (60), which implies that our choice of N order. First, by imposing an axially symmetric reduction

boundary conditions(74) appropriately describes an ex- on the (2+1)-dimensional action, we have studied a trun-
tremal Hartle-Hawking state. cated form of the one-loop effective action for which only

the “s waves” of the matter fields are quantized. It is further
significant that, because of an anomalous reduction process
[27], such a truncated form may not accurately describe even
In the preceding sections, we have examined numerouthe s waves. Hence, from a 3D point of view, the quantum
properties of a spinning BTZ black hole in a state of thermaleffective action should only be regarded as an approxima-
equilibrium. An analytical description of the one-loop back tion. That is, modifications may still be required if our results
reaction was formulated with the application of perturbativeand conclusions are to be directly applied to the higher-
techniques to a dimensionally reduced model. The one-loodimensional theory. However, from the viewpoint of (1
thermodynamics was extracted from the on-shell Euclidear-1)-dilaton black holes, this dimensional-reduction
action, which effectively describes the partition function in aanomaly can be considered as inconsequential.
semi-classical regime. When considerations were limited to Second, there has been an omission of certain non-local
non-extremal black holes, we found these geometrical anterms in the conformally invariant portion of the effective
thermodynamic calculations to be both regular and unamaction[as discussed after E4); also see Ref[36]]. The
biguously defined. However, the extremal limit of these cal-inclusion of these terms would likely modify the quantitative
culations was shown to be plagued by divergent behaviordetails of our one-loop calculations. We expect, however,
This extremal breakdown in the one-loop approximation isthat the qualitative outcomes of this paper will persist even
suggestive of a generalized third law of thermodynamics tha&fter the conformally invariant terms have been rigorously

1 182

2 L2—x2

12
2Lx2

miL) 8k

Ya , (83

KXY
14 x°

XO
[2(x+x0)4

|+

uu

(3x3— 2x X?— Bx3x

2x3 !
—2x5)—3 —35|( (84

((x+x0)2
In i

uv

K (x*=xg)?

T 8|_4 X2

(85

VI. CONCLUSION
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dealt with. That is, we anticipate that extremal black holes It is our hope that the above issues will be formally ad-
will maintain their regular behavior when the methodologydressed in a future work. In any event, the technigues of our
of Sec. V is applied, whereas the singularities arising in thecurrent analysis should prove useful in subsequent studies on
extremal limit(of the non-extremal calculationsvill perse-  both extremal and non-extremal black hole thermodynamics.
vere. To partially justify this last statement, we note that an

expansion based on ‘“covariant perturbation theorfghe
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