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One-loop corrected thermodynamics of the extremal and nonextremal spinning
Banados-Teitelboim-Zanelli black hole
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We consider the one-loop corrected geometry and thermodynamics of a rotating BTZ black hole by way of
a dimensionally reduced dilaton model. The analysis begins with a comprehensive study of the non-extremal
solution after which two different methods are invoked to study the extremal case. The first approach considers
the extremal limit of the non-extremal calculations, whereas the second treatment is based on the following
conjecture: extremal and non-extremal black holes are qualitatively distinct entities. We show that only the
latter method yields regularity and consistency at the one-loop level. This is suggestive of a generalized third
law of thermodynamics that forbids continuous evolution from non-extremal to extremal black hole geom-
etries.
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I. INTRODUCTION

Nearly 30 years have passed since Bekenstein and Ha
ing conjectured the laws of black hole mechanics to be
analogy with those of thermodynamics@1#. This analogy is
now widely accepted as an actual physical relation rat
than just a mathematical anomaly. This in large part is du
Hawking’s landmark discovery that black holes radiate th
mally @2#. One of the more important open issues in th
regard is the microscopic source of black hole entropy@3#.

In the case of non-extremal black holes, the quantify
relations for the temperature and entropy are well es
lished:T5k/2p andS5A/4, respectively, wherek denotes
the surface gravity,A denotes the surface area of the ou
horizon and all fundamental constants have been set to u
However, when extremal black holes are considered~i.e.,
charged or spinning black holes with a degenerate hori
singularity!, it is an entirely different matter. There is still n
consensus regarding extremal thermodynamics.

Extremal black holes are often interpreted as a limit
case of non-extremal solutions@4#, and this viewpoint leads
to Text50 and Sext5Aext/4.0. However, Hawkinget al.
@5#, Teitelboim @6# and others@7,8# have argued strongly
against this intuitive notion. The ‘‘Hawking-Teitelboim
conjecture’’—that extremal and non-extremal black ho
are qualitatively distinct objects—has profound influences
thermodynamics. For instance, it has been argued thatText is
an arbitrary quantity. Quantitatively, this can be explained
the double zero in the extremal metric at the horizon, wh
translates to no conical singularity in the Euclidean~i.e.,
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imaginary time! sector. Hence, there is no method for fixin
the Euclidean time periodicity~which is equivalent to the
inverse black hole temperature!, contrary to the non-extrema
case@9#. Qualitatively, the arbitrary temperature can be
terpreted as a consequence of the third law of thermodyn
ics ~i.e., no system with a finite temperature can ever re
T50), which prevents non-extremal black holes from evo
ing into extremal ones andvice versa. An extremal black
hole must be free to radiate at any temperature so as to re
its extremal nature, regardless of incoming radiation.

It has been further proposed that the arbitrary tempera
implies a vanishing entropy. This argument is based
qualitative differences~in the Euclidean sector! between the
extremal and non-extremal topologies. The Euclidean top
ogy of an extremal black hole is relatively trivial, and th
effectively eliminates the usual horizon contribution~which
accounts for the non-extremal entropy@9#! to the Euclidean
action. Note that the findings of various other works ha
since supported the Hawking-Teitelboim conjecture@10–15#.

In spite of the compelling nature of the above argumen
there is still significant opposition to this point of view
Trivedi @16# and Loranzet al. @17# have argued that stres
tensor regularity on the horizon~in the free-falling observer
frame! will be violated unlessText50. Meanwhile, the stron-
gest case againstSext50 has come from the calculations o
Strominger and others@18#. They considered certain classe
of weakly coupled string theory~for which massive string
states can be represented by extremal black holes! and used a
statistical procedure to generateSext5Aext/4, precisely. The
same result has been obtained elsewhere with arguments
favor a well-defined extremal limit. These include Ghosh a
Mitra @19# and Kiefer and Louko@20# ~quantizing the system
before extremizing!, as well as Zaslavskii@21# ~confining the
black hole to a finite cavity before extremizing!. In still an-
other viewpoint, Wanget al. @22# have proposed that distinc
extremal solutions~‘‘Hawking’s’’ and ‘‘Zaslavskii’s’’ ! can
coexist in nature.

In this paper, we hope to gain further understanding i

-
n,
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A. J. M. MEDVED AND G. KUNSTATTER PHYSICAL REVIEW D63 104005
the thermodynamics of extremal black holes. The vehicle
our investigations is a special dilaton model of gravity th
describes the (111)-dimensional projection of a rotatin
Banados-Teitelboim-Zanelli~BTZ! black hole. The BTZ
black hole refers to solutions of (211)-dimensional anti–de
Sitter gravity that were first documented by Banados, Tei
boim and Zanelli@23#. The reduction process to a dilato
model is based on the work of Achucarro and Ortiz@24#. The
BTZ model has sparked recent interest due to its profo
connections with string theory. That is, many of the bla
holes pertaining to string theory have near-horizon geo
etries that can be expressed as BTZ3 simple manifold@25#.

Recently, it has been pointed out that the procedure
dimensional reduction and quantization do not necessa
commute@26#. Moreover, there is a so-called ‘‘dimensiona
reduction anomaly’’@27# which implies that renormalized
quantities in the unreduced theory cannot be simply obtai
by renormalizing and summing their dimensionally reduc
counterparts. Our interest in the present paper, howeve
not necessarily to derive quantitatively accurate correcti
to the BTZ black hole thermodynamics. It is to understa
qualitatively the difference between extremal and no
extremal geometries. In this regard, the quantization of
dimensionally reduced theory may be adequate. In any c
in the context of (111)-dimensional dilaton gravity, the
dimensional-reduction anomaly can be considered as in
sequential.

The remainder of the paper proceeds as follows. In S
II, we consider the non-extremal geometry, including the c
culation of back-reaction effects to the first perturbative
der. Section III continues the non-extremal study with t
evaluation of one-loop thermodynamics by way of a Eucl
ean action approach@9,28,29#. In Sec. IV, we investigate the
extremal limit by applying a limiting procedure to the resu
of the prior two sections. Section V considers an alterna
method for extremal calculations that reflects the topolog
differences between the extremal and non-extremal ge
etries. This method is similar to the approach taken by Bu
and Radovanovic@13# in the context of Reissner-Nordstrom
black holes. Section VI contains a summary of our findin
along with a brief discussion.

Note that all calculations are with respect to the Hart
Hawking vacuum state@30#. This state can be regarded
describing an eternal black hole in thermal equilibrium
~effectively! a black hole within a thermally reflectiv
‘‘box.’’

Although this Introduction has emphasized extremal bla
holes, the non-extremal results have merit on their own. W
this in mind, we make note of other studies@31# that have
considered the one-loop corrected thermodynamics of
BTZ black hole.

II. NON-EXTREMAL GEOMETRY

Before proceeding on with the formal discussion, we n
that the analytical techniques of this paper are based o
previous one-loop study of generic dilaton gravity@32#.
Since the current treatment goes rather quickly over som
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the steps, the reader is referred to the above citation fo
more detailed discussion.

The initiating point of our formalism is
(211)-dimensional anti–de Sitter gravity. Along with th
classical action, we include a matter action that descri
minimally coupled, massless, quantized scalar fields. T
complete action functional~up to surface terms! can be writ-
ten as follows:

I (3)5
1

16pG(3)
E d3xA2g(3)S R(3)1

2

l 2D
2

K
16pG(3)

E d3xA2g(3)(
i 51

N

~¹ (3)f i !
2, ~1!

where f i denotes the matter fields,N is a large integer,G(3)

is the 3D Newton constant,22l 22 is the negative cosmo
logical constant andK is a coupling parameter that vanish
in the classical limit~i.e., as\→0).

Axial symmetry can be imposed on this action by way
the following metric ansatz@24#:

ds2(3)5gmndxmdxn1f2~adu1Amdxm!2, ~2!

wherem,n5$0,1%, a is an arbitrary constant of dimensio
length, Am is a vector gauge field,f is a scalar field~the
‘‘dilaton’’ ! and all fields are functions of only$x0,x1%
5$t,x%. This reduction process results in the following (
11)-dilaton model:

I 5E d2xA2gfS R12l 222
1

4
f2FmnFmnD

2KE d2xA2gf(
i 51

N

~¹ f i !
2, ~3!

where we have seta58G(3) without loss of generality. The
‘‘field-strength’’ tensorFmn5]mAn2]nAm is known to be
directly related to the angular momentum of a rotating B
black hole@24#. Note that the reduced action describes co
stant curvature gravity with coupling to both an Abelia
gauge field and conformally invariant matter fields.

Since the action is ultimately significant as the expon
in a path integral, it is possible to ‘‘integrate out’’ the matt
fields and then consider the vacuum limit~i.e., f i→0). In
this event, the resultant ‘‘effective action’’ can be~at least!
partially derived in conformally invariant matter theories b
cause of its exploitable relation to the trace conform
anomaly@33#. For the special case of conformally invaria
matter in two spacetime dimensions, the effective action
be derived exactly up to terms that are conformally invari
@34#. For the dilaton model of interest, we find~assuming
that N@1 and the black hole is massive when compared
the Planck scale!
5-2
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ONE-LOOP CORRECTED THERMODYNAMICS OF THE . . . PHYSICAL REVIEW D 63 104005
I 5I CL2KE d2xA2gFR
1

h
R2

3

f2 ~¹f!2S 1

h
R2 ln m2D

26 ln~f!RG , ~4!

where I CL is the left-most integral in Eq.~3!, K has been
appropriately rescaled~now, K'N\) and m is an arbitrary
parameter that arises out of renormalization procedures@33#.
The precise forms of the functional coefficients~in this case,
3/f2 and 6 lnf) depend upon the form of dilaton-matte
coupling that arises out of the reduction process.

It should be pointed out that the conformally invaria
portion of the effective action, which is described by t
ln m2 term in Eq.~4!, is incomplete as shown. This portio
cannot be found in a closed form, but it can be approxima
by an expansion~in powers of curvature! of which we have
only included the leading-order term@35#. Recently, non-
local terms of this expansion, which appear to be relevan
the perturbative order of Eq.~4!, have been calculated@36#.
Because of their non-local nature, the incorporation of s
terms into our formalism is by no means a straightforwa
process. Consequently, for the sake of simplicity, we h
omitted these terms in the current analysis. This issue is
ther addressed in the final section.

It is convenient to re-express the effective action in
equivalent local form as follows:

I 5I CL2KE d2xA2gF ~c1x!R1gmn¹mc¹nx

2
3

f2 ~¹f!2~c2 ln m2!26 ln~f!RG , ~5!

wherec andx are a pair of auxiliary scalar fields1 that are
constrained according to the following equations:

hc5R, ~6!

hx5R2
3

f2 ~¹f!2. ~7!

By varying the effective action~5! with respect to the metric
dilaton and Abelian gauge field, we obtain

22¹m¹nf12gmnhf2
2

l 2
gmnf2

1

4
~3gmnFabFab

24gabFmaFnb!f35Tmn , ~8!

R1
2

l 2
2

3

4
f2FmnFmn5D, ~9!

¹m~Fmnf3!50, ~10!

1Auxiliary fields of an analogous form were first used in Ref.@37#
in the context of spherically symmetric gravity.
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Tmn[2KF2¹m¹n~c26 ln~f!1x!2~¹mx¹nc

1¹mc¹nx!2gmn$2h@c26 ln~f!1x#

2gab¹ax¹bc%1
3

f2 ~c2 ln m2!@2¹mf¹nf

2gmn~¹f!2#G , ~11!

D[6K$f23~¹f!2~c2 ln m2!1gmn¹m@f22~c

2 ln m2!¹nf#2f21R%. ~12!

Note thatTmn can be identified with the quantum stress te
sor.

The ‘‘Maxwell’’ field equation ~10! can be trivially inte-
grated to yield

Fmn5
1

l

emn

A2g

J

f3 , ~13!

whereemn is the Levi-Civitàsymbol andJ is an integration
constant that can be identified with the Abelian charge
servable~i.e., quantized angular momentum!. The above re-
sult inspires the definition of an ‘‘effective potential
VJ(f)[ l 22(2f2 1

2 J2f23), which leads to the remaining
field equations~8,9! taking on the following compact forms

22¹m¹nf12gmnhf2gmnVJ~f!5Tmn , ~14!

R1
]VJ

]f
5D. ~15!

It is instructive to first consider the classical (K50) so-
lution. A prior work has demonstrated how to obtain t
classical solution in a static gauge for a wide class of dila
models@38#. For reduced BTZ gravity, this solution can b
expressed as follows:

fCL5
x

l
, ~16!

~At!CL52
l 2J

2x2 , ~17!

ds252gCL~x!dt21gCL
21~x!dx2, ~18!

gCL~x!5
x2

l 2 2 lM 1
J2l 2

4x2 , ~19!

where we have assumed~without loss of generality! a time-
like gauge vector andM is a constant parameter that can
identified with the Arnowitt-Deser-Misner~ADM ! mass ob-
servable. It is useful to note thatRCL52gCL9 ~where primes
5-3
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A. J. M. MEDVED AND G. KUNSTATTER PHYSICAL REVIEW D63 104005
indicate differentiation with respect tox) and gCL(x)5
2ukmu2, wherekm5 l (A2g)21emn]nf is a Killing vector for
the classical field equations.

For subsequent calculations, it is convenient to re-exp
gCL(x) in the following form:

gCL~x!5
1

l 2x2 ~x22xo
2!~x22xi

2!, ~20!

where

xo
25

l 3

2
@M1AM22J2/ l 2#, ~21!

xi
25

l 3

2
@M2AM22J2/ l 2#. ~22!

The positive root ofxo
2/xi

2 locates the classical outer/inne
event horizon. Since we have restricted considerations
black hole solutions~and non-extremal ones until Sec. IV!,
the phase space of observables is restricted byM.0 and
M2.J2/ l 2.

For a higher-order analysis, it is necessary to introduc
suitable ansatz for describing the back-reaction effects on
classical geometry. Following a proposal by Frolovet al.
@29#, we now express the quantum-corrected solution in
following manner:

f5fCL5x/ l , ~23!

ds252e2v(x)g~x!dt21g21~x!dx2, ~24!

g~x!5gCL~x!2 lm~x!, ~25!

where the fieldsm(x) andv(x) must vanish asK→0. Note
that At5(At)CL follows trivially, since we have assumed n
coupling between the matter and Abelian sectors.

By substituting the above ansatz into the field equatio
we find that Eq.~15! and the off-diagonal component of Eq
~14! are both identically vanishing. After some simplific
tion, the ‘‘surviving’’ field equations are found to be

2e2vgm85Ttt , ~26!

2
m8

g
1

2

l
v85Txx . ~27!

If these expressions are truncated at the one-loop level~i.e.,
at first order inK), then we obtain the elegant results

m852Tt
t , ~28!

v85
l

2gCL
~Tx

x2Tt
t!. ~29!

Next in this study, we explicitly formulate the auxiliar
fields c(x) andx(x). Since we are ultimately deriving one
loop expressions, it is sufficient to express these fields
terms of the classical geometry. Furthermore, the choice
boundary conditions should reflect the Hartle-Hawki
10400
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vacuum state@30#. Such conditions restrict the analysis
solutions that are periodic in Euclidean~i.e., imaginary! time
when on a spatial manifold extending from the outer horiz
to a fixed outer boundaryL @9#.

Let us first consider solving Eq.~6! for c. The appropriate
solution can be found by way of a special map@29#: the
classical Euclidean geometry~in a static gauge! conformally
mapped to the geometry of a ‘‘disk.’’ Significantly, the dis
geometry can be interpreted as the Rindler coordinate
scription of the Hartle-Hawking state for a flat spacetim
@33#. On the basis of Eqs.~6!,~18!, such a map can be suit
ably described by

gCL~x!~ idt !21gCL
21~x!dx25e2c(z)@z2du21dz2#, ~30!

where the disk coordinates are confined to 0<u<2p and
0<z<Lz . Solving forc„z(x)…, we find

c~x!52 ln gCL~x!2
4p

bCL
E

x

L dx

gCL~x!
22 lnS bCL

2pLz
D ,

~31!

where bCL denotes the Euclidean time periodicity for th
classical system~i.e., 0< i t<bCL).

We can determinex(x) by integrating Eq.~7! and then
imposing the constraint thatx→c in the limit of minimal
dilaton-matter coupling~for which the effective action as
sumes a ‘‘Polyakov-like’’ form@39#!. This procedure leads
to2

x~x!5c~x!13E
x

L dx

gCL~x!
E

xo

x dx̃gCL~ x̃!

x̃2
. ~32!

By substituting the classical solution~16!,~18!,~31!,~32!
into the stress tensor~11!, we obtain the following one-loop
expressions:

Tt
t5

K
gCL

F ~gCL8 !224gCLgCL9 2
16p2

bCL
2

16
gCL

x2
~2gCL2xgCL8 !

23
gCL

2

x2 S 21 ln gCL1
4p

bCL
E

x

L dx

gCL
1 ln Y2D

1
12p

bCL
E

x0

x dxgCL

x2 G , ~33!

Tx
x5

K
gCL

F16p2

bCL
2

2~gCL8 !22
6

x
gCLgCL8 13

gCL
2

x2 S ln gCL

1
4p

bCL
E

x

L dx

gCL
1 ln Y2D 2

12p

bCL
E

x0

x dxgCL

x2 G , ~34!

2The x5xo integration limit ~besides being an intuitive choice!
can be uniquely fixed by constraining the curvatureR to be regular
on the horizon.
5-4
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whereY[mbCL/2pLz can be regarded as an arbitrary p
rameter.

When on the constraint surface, the Euclidean time p
odicity must be suitably fixed to ensure the horizon regu
ity of the Euclidean geometry~i.e., to eliminate any conica
singularity or deficit angle! @9#. On this basis, we can explic
itly evaluate the on-shell value ofbCL by matching the clas-
sical solution with a conical geometry,

gCL~x!~ idt !21gCL
21~x!dx25z2du21H~z!dz2 ~35!

~where 0<u<2p and z50 at x5xo), and then enforcing
H(0)51. This process yields

bCL5
4p

gCL8
U

x5xo

5
2p l 2xo

xo
22xi

2
. ~36!

By substituting Eq.~33! into Eq.~28!, integrating and also
incorporating Eqs.~20!,~36!, we find

m~x!52
K
l 2 F2x23

xo
21xi

2

x
28xi lnS x2xi

x1xi
D

1
1

2 S 3x13
xo

21xi
2

x
2

xo
2xi

2

x3 D S xi

xo
lnS x2xi

x1xi
D

1 lnS ~x1xo!2~x22xi
2!

l 2x2 D 1Q D G1m0 , ~37!

where

Q[2
xi

xo
lnS L2xi

L1xi
D1 lnS L2xo

L1xo
D1 ln Y2 ~38!
an

ri
er

ns

10400
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andm0 is an integration constant that can be absorbed~with-
out loss of generality! into the classical massM. Next, let us
invoke the conventionv(L)50 and define a functionÃ(x)
in accordance withv(x)5Kl @Ã(L)2Ã(x)#. Then the sub-
stitution of Eqs.~33!,~34! into Eq. ~29! ultimately yields

Ã~x!52
1

x
12

3xo
21xi

2

~xo
22xi

2!~x1xo!

22
xi

2~xo
213xi

2!1xo~xo
225xi

2!x

xo~xo
22xi

2!~x22xi
2!

28
xi

~xo1xi !
2

lnS x2xi

x1xo
D18

xi

~xo2xi !
2

lnS x1xi

x1xo
D

1
3

x F xi

xo
lnS x2xi

x1xi
D1 lnS ~x1xo!2~x22xi

2!

l 2x2 D 1QG .

~39!

Note thatm(x) andv(x) are both well-defined functions fo
xo<x<L, thereby substantiating our choice of ansatz.

We next consider the quantum-corrected curvature. T
can be written asR52e2v@e2v(e2vg)8#8 or, for a one-
loop truncation,

R52gCL9 1 lm922v9gCL23v8gCL8 . ~40!

Substituting the prior results form(x) andv(x), evaluating
the derivatives and then simplifying, we obtain
R52
2

x4l 2 ~x413xo
2xi

2!1
2K
lx H 241

6

xox
~xo

22xi
2!1

4

xox4~x1xo!2~x22xi
2!2

@xi
6xo

2~3x316xox218xo
2x14xo

3!

2xi
4x2~3x516xox415xo

2x318xo
3x2111xo

4x16xo
5!2xi

2x5~3x424xox3211xo
2x226xo

3x13xo
4!13xo

2x9#

1
3

x4 @3x42~xo
21xi

2!x22xo
2xi

2#F xi

xo
lnS x2xi

x1xi
D1 lnS ~x1xo!2~x22xi

2!

l 2x2 D 1QG J , ~41!
o-
ictly
which is also a well-defined quantity throughout the relev
manifold.

Let us next consider the one-loop shift in the outer ho
zonDxo . To determine this shift, we begin with a first-ord
Taylor expansion of the functiong(xo1Dxo); cf. Eq. ~25!.
After expanding and applying the horizon conditio
gCL(xo)5g(xo1Dxo)50 ~with the latter valid being valid
to first order!, we find
t

-
Dxo5

l 3xo

2~xo
22xi

2!
m~xo!5

lbCL

4p
m~xo!. ~42!

Note that a similar calculation is not viable at the inner h
rizon, since the back-reaction ansatz has not been str
defined forx,xo . Furthermore, the shift inxi is expected to
be non-analytic inK @33#.
5-5
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III. NON-EXTREMAL THERMODYNAMICS

Our method of thermodynamic analysis is based on
well-known techniques of Gibbons and Hawking@9# and
others @28,29#. This procedure can be summarized as f
lows. After analytically continuing to Euclidean spacetim
and closing off the imaginary time direction, one finds th
the path integral can be interpreted as a thermodynamic
tition function Z. This partition function describes an en
semble of black holes that are radiating at a tempera
b21, whereb corresponds to the periodicity of Euclidea
time. Furthermore, a semi-classical approximation has b
shown to yield the relation@9#

ln~Z!52I OS, ~43!

whereI OS denotes the on-shell Euclidean action. Note for
on-shell system thatb21 corresponds to the so-calle
‘‘Hawking temperature’’ of black hole radiation.3

Let us reconsider the effective action of Eq.~5!. By trans-
forming to Euclidean spacetime~i.e., rotatingt→ i t and re-
expressing all geometrical objects in terms of a positi
definite metric4! and also applying the static solution of Eq
~23!,~24!, we obtain the following Euclidean form of th
action:

I 52bE
xq

L

dxevS x

l
R1VJS x

l D2KH Fc26 lnS x

l D1xGR
1gx8c823

g

x2 ~c2 ln m2!J D1bS EL

dxevRD
3H x

l
2KFc26 lnS x

l D1xG J U
x5L

2
bJ

l
DAt , ~44!

where xq represents the quantum-corrected outer horiz
DAt[@At(L)2At(xq)# and note thatevR is a total deriva-
tive. So as to ensure a well-defined variational principle
the boundaries of the system, we have included the appro
ate surface terms in the third line of this expression. Exc
for the right-most~charge sector! term, this surface contribu
tion is directly analogous to Gibbons and Hawking’s ‘‘e
trinsic curvature term’’@9#.5

3Keep in mind that an observer atx locally measures an invers
temperature ofA2gtt@x#b, that is, a ‘‘red-shifted’’ value of inverse
temperature@28#. For anti–de Sitter spacetimes~unlike for asymp-
totically flat ones!, this red-shift factor diverges asx→`.

4Technically, the Abelian charge should also be complexified
that Atdt remains invariant@28#. It is implied, however, that we
have already continued back to a real charge before presenting
result in this paper.

5Technically, we should also include an analogous horizon te
as well as a delta-function contribution from the curvature@40#.
However, these horizon contributions are known to ultimately c
cel in the final on-shell expressions@29#, and hence are not pertinen
to the thermodynamics.
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The Euclidean action can be written in a more conveni
form by way of Eq. ~14!. Let us first defineGmn as the
left-hand side of this field equation and then express bothGtt
andTtt @which can be obtained6 from Eq. ~11!# in terms of
the static solution. After integrating the curvature terms
the Euclidean action~44! by parts, we can incorporate th
static forms ofGtt andTtt to obtain

I 5bE
xq

L

dxS ev~Gt
t2Tt

t!2H 2

l
evg14Ke2v~e2vg!8

12KevgFc16 lnS x

l D2xG8J 8D1bS Exq
dxevRD

3H x

l
2KFc26 lnS x

l D1xG J U
x5xq

2
bJ

l
DAt . ~45!

Evidently, the above integrand vanishes on the constr
surface up to a total divergence. It follows that the on-sh
Euclidean action reduces to just a surface expression,
this is found to be

I OS52bH 2

l
g14K~e2vg!812KgFc16 lnS x

l D2xG8J Ux5L

24pH x

l
2KFc26 lnS x

l D1xG J U
x5xq

2
bJ

l
DAt . ~46!

Here, we have usedv(L)5g(xq)50 and the perturbative
analogue of Eq.~36!:

b54p
e2v

g8
U

x5xq

. ~47!

We now recall the relation ln(Z)52I OS and point out
that ~on the basis of thermodynamic arguments! the loga-
rithm of the partition function should ultimately take on th
following free energy form:

ln~Z!52bLFE2(
h

hghG1S, ~48!

wherebL is the fixed value of the inverse temperature at
outer boundary of the system,E is the thermal energy,h is
an intrinsically conserved quantity,gh is the related chemi-
cal potential andS is the entropy of the system. By compa
ing the two expressions for lnZ, we are able to make the
following identifications:

o

ny

,

-
6It is helpful to first make the substitutionh(c1x)5h@2c

23f22(¹f)2#; cf. Eqs.~6!,~7!.
5-6
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E522
b

bL
H 1

l
gCL2m12KgCL8

1KgCLFc16 lnS x

l D2xG8J U
x5L

, ~49!

S5
4p

l
~xo1Dxo!24pKFc26 lnS x

l D1xGU
x5xo

, ~50!

gJ5
1

l

b

bL
@At~L !2At~xo1Dxo!#. ~51!
in
p

r
r

e
ld
o

s-
i

n.
y
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Before any further evaluation, two points should be cla
fied:

~i! The inverse boundary temperaturebL is ‘‘red-shifted’’
from the inverse Hawking temperatureb according to@28#
bL5Agtt@x5L#b5Ag(L)b.

~ii ! The Euclidean action is known to diverge as the ou
boundary tends to infinity@9#, which implies that the calcu-
lated energy will also diverge unless a suitable subtrac
procedure is invoked. The usual convention is to subtract
the energy contribution from the asymptotic geometry@28#,
and so we define a subtracted energy according toEsub

[E@g(L)#2E@g`#, whereg`[L2/ l 2.
By substituting the prior geometrical formalism into Eq

~47!,~49!–~51! and also using binomial expansions where a
plicable, we obtain the following one-loop expressions:
T[b215bCL
211KlbCL

21H 2
9xo

416xo
2xi

21xi
4

~xo
22xi

2!2xo

116
xoxi

2

~xo
22xi

2!2 F2 lnS l

xo
D1QG1Ã~L !J , ~52!

Esub52
L

l 2S 12
1

L2A~L22xo
2!~L22xi

2! D1
lLm~L !

A~L22xo
2!~L22xi

2!
12

K
l F132

3xo

L

2
13xoL422~3xo

21xi
2!L323xo~xo

21xi
2!L21xo

3xi
2

xoL2A~L22xo
2!~L22xi

2!
G , ~53!

S5
4pxo

l
2

4pK
xo

22xi
2 H xo

213xi
21

xi

xo
~3xo

21xi
2!lnS L2xi

L1xi
D12~3xo

21xi
2!lnS L1xo

xo
D

2~xo
213xi

2!lnS L22xi
2

xo
22xi

2 D 2~xo
22xi

2!lnS xo
5L

l 6 D 2~5xo
22xi

2!F lnS xo
22xi

2

l 2 D 1QG J , ~54!

gJ5
l 2J~L22xo

2!

2xo
2LA~L22xo

2!~L22xi
2!

F11
1

2

l 3L2

L22xo
2 S m~L !

L22xi
2

2
2m~xo!

xo
22xi

2 D G . ~55!
or
ime
e

l
ric

the

r-
tion

nts
ssed
A brief comment regarding the one-loop entropy is
order. Although the black hole entropy is normally a pro
erty of the horizon, the above expression~54! contains terms
that depend on the ‘‘box size’’L. This paradoxical behavio
can be attributed to the non-local nature of the auxilia
fields c and x; cf. Eqs. ~6!,~7!. Even at the horizon, thes
fields contain information with regard to the entire manifo
Physically, theL-dependent terms can be attributed to a ‘‘h
thermal gas’’ that fills up the box.

For a check on validity, it is helpful to consider the cla
sical limit. First, we can re-express the classical entropy
the usual ‘‘Bekenstein-Hawking’’ form~i.e.,S5A/4G(3)) by
making the following identification @cf. Eq. ~2!#: A
516pG(3)f(xo) is the circumference of the outer horizo
Let us next consider the behavior of the classical energ
theL→` limit. Under these conditions, it can be shown th
-

y

.
t

n

in
t

Ag(L)Esub→M , which is the expected asymptotic behavi
of a quasi-localized energy in an anti–de Sitter spacet
@41#. A similar analysis for the chemical potential yields th
limit Ag(L)gJ→ lJ/2xo

2 , which is the form of the rotationa
potential that might be anticipated for an axially symmet
system of radiusxo and angular momentumJ. Finally, it can
be readily verified@4# that the classical limit ofT satisfies the
expected relation between the Hawking temperature and
surface gravity: i.e.,T5k/2p.

A final thermodynamic consideration is the flux of the
mal radiation. This flux has both an emission and absorp
component that are equal in magnitude~assuming the Hartle-
Hawking state!. Furthermore, it has been shown@42# that the
flux components are equivalent to the diagonal compone
of the stress tensor if these tensor components are expre
5-7
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in terms of suitably defined null coordinates. In regard to
classical BTZ geometry, the appropriate coordinates can
defined as follows:

u5t2E dx

gCL
, v5t1E dx

gCL
. ~56!

It can be readily shown that

Tuu5Tvv52
gCL

4
~Tt

t2Tx
x!. ~57!

Note thatTuu/Tvv represents the outgoing/incoming flux an
Tuv can be obtained by ‘‘flipping’’ the sign in front ofTx

x .
By incorporating Eqs.~33!,~34! into the above relation

we find the following results:

Tuu52
K
2

~x2xo!2

l 4xo
2x6 H 3xo

2x616xo~3xo
222xi

2!x5

1~3xo
422xo

2xi
214xi

4!x414xoxi
2~2xo

22xi
2!x3

13xo
2xi

2~2xo
223xi

2!x2210xo
3xi

4x25xo
4xi

4

23xo
2~x1xo!2~x22xi

2!2F xi

xo
lnS x2xi

x1xi
D

1 lnS ~x1xo!2~x22xi
2!

l 2x2 D 1QG J , ~58!

Tuv5
K
2

~x22xo
2!~x22xi

2!

l 4x6

3@13x413~xo
21xi

2!x223xo
2xi

2#. ~59!

Note the divergence of these components asx→`. An as-
ymptotically divergent flux is an expected outcome for
anti–de Sitter theory. Since an asymptotic observer loc
measures a vanishing temperature~see footnote 3!, it follows
that she would detect an infinite flux of particles.

The above calculations provide a further check on
formalism. Christensen and Fulling@43# have shown that en
forcing stress tensor regularity at the outer horizon in
free-falling frame~which is a necessary condition for de
scribing the Hartle-Hawking state! leads to a certain class o
constraints. These translate to the~outer! horizon regularity
of the following three quantities:

~ i! Tvv , ~ ii ! Tuv /gCL , ~ iii ! Tuu /gCL
2 . ~60!

The above expressions satisfy all three of these constra
by virtue of thex2xo factor~s! in front.

IV. EXTREMAL LIMIT

It is straightforward to consider the extremal limit of th
prior calculations. By definition, the extremal limit corre
10400
e
be

ly

r

e

ts

sponds to a coincidence in the classical horizons:7 xi→xo or
J2→ l 2M2. This limiting procedure leads to the followin
results:

m~x!52
K
l 2 H 2x26

xo
2

x
28xo lnS x2xo

x1xo
D

1
1

2 S 3x1
6xo

2

x
2

xo
4

x3D F2 lnS x22xo
2

lx D 1 ln Y2G J ,

~61!

Ã~x!→quadratically divergent throughout the manifold,
~62!

R522
x413xo

4

l 2x4
1

2K
lx H 2414

xo
2

x4
~x21xo

2!

1
3

x4 ~3x21xo
2!~x22xo

2!F2 lnS x22xo
2

lx D 1 ln Y2G J ,

~63!

Dxo→ linearly divergent, ~64!

T501 linearly divergent corrections, ~65!

Esub52
xo

2

l 2L
1

lLm~L !

L22xo
2

12K xo

lL 2 S 5L222xoL1xo
2

L1xo
D ,

~66!

S5
4pxo

l
1 linearly divergent corrections, ~67!

gJ5
l 2J

2Lxo
21 linearly divergent corrections, ~68!

Tuu52
K
2

~x2xo!2

l 4x6 H 3x616xox515xo
2x414xo

3x3

23xo
4x2210xo

5x25xo
623~x2xo!2

3~x1xo!4F2 lnS x22xo
2

lx D 1 ln Y2G J , ~69!

Tuv5
K
2

~x2xo!2~x1xo!2

l 4x6
@13x416xo

2x223xo
4#.

~70!

With only a few exceptions~energy, curvature and flux!,
we find the one-loop results to be poorly defined in the
tremal limit. @Note thatm(x) has a logarithmic divergence a

7By invoking a limiting procedure, it is implied that the extrem
condition may be violated by radiation effects. That is, the one-lo
corrected horizons may or may not coincide.
5-8
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the outer horizon.# Furthermore, the stress tensor compon
Tuu fails the previously discussed regularity condition~60!,8

since we now havegCL}(x2xo)2. One must conclude tha
the one-loop ansatz breaks down in this extremal limit
case.

V. ALTERNATIVE APPROACH TO EXTREMAL CASE

In this section, we reconsider the extremal case by inv
ing an ansatz~for quantum corrections! that presumes an
extremal solution from the beginning. There is ample jus
fication for such a procedure because of topological diff
ences in the extremal and non-extremal solutions@6#.

The methodology of this section is to repeat the pr
calculations with three fundamental differences:

~i! In place of the classical metric function of Eq.~20!, we
now use

gCL~x!5
1

l 2x2 ~x22xo
2!2, ~71!

where xo5Al 3M /2 and it is useful to remembergCL8 (xo)
50. Note that the perturbative ansatz of Eqs.~23!–~25! is
otherwise unaltered.

~ii ! We now regard the Euclidean time periodicityb as an
arbitrary quantity. This proposal is based on the followi
observation: the extremal~Euclidean! geometry has no coni
cal singularity to be regulated@5#.

~iii ! In solving for the auxiliary fieldsc andx, we employ
a different method of imposing Hartle-Hawking bounda
conditions. First, the associated field equations~6!,~7! can be
directly integrated to yield

c~x!52 ln gCL1
Cc

l 2 Ex dx

gCL
, ~72!

x852
1

gCL
FgCL8 2

Cx

l 2
13Ex

dx
gCL

x2 G , ~73!

where Cc and Cx are integration constants of dimensio
length.~Note that the second integration constant inc can be
absorbed into lnm2 without loss of generality, whereasx
only appears in the formalism as a derivative.! The next step
in this method is to constrain the pair of integration co
stants. For this purpose, we impose~outer! horizon regularity
on three geometrical functions:m(x), Ã(x) and R(x). By
evaluating each of these quantities~for arbitrary Cc,x) and
locating the horizon singularities in the resultant expressio
we are able to identify the following set of constraints:

~a! m→Cc1Cx58xo or Cc50,
~b! Ã→Cc

22 3
2 CcCx224Ccxo52128xo

2 and ~a!,
~c! R→2Cc23Cx516xo ,

8It has been argued@17# that the same conditions apply to th
extremal case, in spite of the difficulties in formalizing an extrem
analogue to ‘‘Kruskal-like’’~i.e., free-falling! coordinates.
10400
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which has a unique solution of

Cc58xo and Cx50. ~74!

With regard to ~iii !, it is worth noting that the same
method can be applied to the non-extremal case. By imp
ing horizon regularity on the non-extremal geometry, we fi
that Cc52(xo

22xi
2)/xo and Cx52(3xo

21xi
2)/xo , which is

consistent with the prior results forc andx Eqs. ~31!,~32!.
This is not surprising, since the specification of a quant
state~such as the Hartle-Hawking state! should uniquely de-
termine these Green’s functions@43#.

With the new ansatz being rigorously stipulated, we a
now in a position to re-evaluate the extremal black h
properties. These results are reported below with comm
tary wherever clarity is required:

m~x!5m012
K
l 2 H 2x26

xo
2

x
12

xo
3

x2 216
xo

2

x1xo

1S 3x16
xo

2

x
2

xo
4

x3D F lnS ~x1xo!2

lx D1QG J , ~75!

where we have redefined

Q[ lnS L2xo

L1xo
D22

xoL

L22xo
2 1

1

2
ln m2 ~76!

and m0 is a constant that must be constrained to sati
m(xo)50. This constraint becomes evident when we co
sider a first-order Taylor expansion ofg(xo1Dxo). Note that
no such method of fixingm0 is apparent in the non-extrema
analysis:

Ã~x!52
1

x
1

4

x1xo
28

xo

~x1xo!21
8

3

xo
2

~x1xo!3

1
6

x F lnS ~x1xo!2

lx D1QG , ~77!

R~x!522
x413xo

4

l 2x4 14
K
lx H 12

x1xo

x
16

xo

x3 ~3x21xo
2!

18
xo

2

x4 ~x21xo
2!18

xo

x

~3x1xo!~x21xo
2!

~x1xo!3

1
3

x4 ~3x21xo
2!~x22xo

2!

3F lnS ~x1xo!2

lx D1QG J , ~78!

Dxo5 l
m8

gCL9
U

x5xo

52Kl . ~79!

For this calculation, we have considered a first-order Tay
expansion ofg8(xo1Dxo), since such an expansion forg
leavesDxo as an indeterminate quantity. If we impose t

l

5-9



-

n

tia
r-

n
eg
f
-

o
a

ck
ive
oo
ea

a

an
m

al
io
i

th

x-

lso
nt:
is-
lu-
rity
y
to

ra-
ity.
ori-
e.

ck
for

e-

ic
te

ac-
ult
es
ure

h-
al-
od

d

be
rer
en-

are
n
n-
ly
er
cess
ven
m
a-

lts
er-
1
n

ocal
e

e
er,
en
sly

A. J. M. MEDVED AND G. KUNSTATTER PHYSICAL REVIEW D63 104005
one-loop constraintg8(xo1Dxo)50 ~which is justified by
Hawking’s conjecture@5#: an extremal black hole should re
tain its nature, regardless of radiation effects! on the expan-
sion in question, then Eq.~79! follows:

T5b21→ indeterminate~arbitrary by hypothesis!,
~80!

Esub52
xo

2

l 2L
1

lLm~L !

L22xo
2 12

Kxo

lL 2~L22xo
2!

3@5L327xoL225xo
2L2xo

3#, ~81!

S50. ~82!

This result of vanishing entropy occurs trivially, as the o
shell Euclidean action is now linearly proportional tob. Fur-
thermore, the horizon surface term~which normally accounts
for the entropy! must vanish according tog(xq)5g8(xq)
50 @cf. Eq. ~45!#:

gJ5
l 2J

2Lxo
2 F11

1

2

l 3L2

L22xo
2S m~L !

L22xo
2 2

8K
l 2xo

D G , ~83!

Tuu52
K
l 4

~x22xo
2!4

x6 H 2
xo

~x1xo!4 ~3x322xox225xo
2x

22xo
3!23F lnS ~x1xo!2

lx D1Q2
1

2G J , ~84!

Tuv58
K
l 4

~x22xo
2!2

x2 . ~85!

Evidently, the approach of this section is a substan
improvement over the prior limiting procedure. All prope
ties ~except arbitrary temperature! are now well defined and
all local quantities are regular throughout the relevant ma
fold. Furthermore, the stress tensor satisfies the horizon r
larity conditions ~60!, which implies that our choice o
boundary conditions~74! appropriately describes an ex
tremal Hartle-Hawking state.

VI. CONCLUSION

In the preceding sections, we have examined numer
properties of a spinning BTZ black hole in a state of therm
equilibrium. An analytical description of the one-loop ba
reaction was formulated with the application of perturbat
techniques to a dimensionally reduced model. The one-l
thermodynamics was extracted from the on-shell Euclid
action, which effectively describes the partition function in
semi-classical regime. When considerations were limited
non-extremal black holes, we found these geometrical
thermodynamic calculations to be both regular and una
biguously defined. However, the extremal limit of these c
culations was shown to be plagued by divergent behav
This extremal breakdown in the one-loop approximation
suggestive of a generalized third law of thermodynamics
10400
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prohibits continuous evolution from non-extremal to e
tremal states.

As an alternative to the limiting procedure, we have a
considered the extremal case from the following viewpoi
extremal and non-extremal black holes are qualitatively d
tinct entities. In this alternative approach, the extremal so
tion was assumed from the beginning and horizon regula
~in the one-loop geometry! was used to fix the boundar
conditions. With this procedure, we found all calculations
be regular and all thermodynamic properties~with one ex-
ception! to be well defined. The one exception was tempe
ture, which we justifiably regarded as an arbitrary quant
Other notable results were a vanishing entropy and the h
zon regularity of the stress tensor in the free-falling fram
Although this analysis was limited to the study of BTZ bla
holes, qualitatively similar outcomes have been obtained
the Reissner-Nordstro¨m case@13#.

The arbitrary nature of the extremal temperature is som
what unsettling inasmuch as the physical state is~at least in
some sense! a thermal one with non-vanishing asymptot
radiation. To help clarify this apparent conflict, we take no
of recent findings by Liberatiet al. @14#. They have consid-
ered an extremal Reissner-Nordstro¨m black hole undergoing
collapse and demonstrated that~in spite of asymptotic par-
ticle production! the temperature remains undefinable on
count of a non-Planckian distribution. Although this res
does not apply directly to static BTZ black holes, it do
imply an intrinsic elusiveness in measuring the temperat
of an extremal black hole.

One may find it intuitively disturbing to assign a vanis
ing entropy to a macroscopic object that emits radiation,
though a strong case for this has been recently put forth. H
@15# argued in favor ofSext50 by appealing to the secon
law of thermodynamics on the basis of aGedankenexperi-
ment. However, before any definitive viewpoint can
reached on this subject, we will ultimately require a clea
picture of what degrees of freedom underlie black hole
tropy.

A couple of final technical notes regarding our results
in order. First, by imposing an axially symmetric reductio
on the (211)-dimensional action, we have studied a tru
cated form of the one-loop effective action for which on
the ‘‘s waves’’ of the matter fields are quantized. It is furth
significant that, because of an anomalous reduction pro
@27#, such a truncated form may not accurately describe e
the s waves. Hence, from a 3D point of view, the quantu
effective action should only be regarded as an approxim
tion. That is, modifications may still be required if our resu
and conclusions are to be directly applied to the high
dimensional theory. However, from the viewpoint of (
11)-dilaton black holes, this dimensional-reductio
anomaly can be considered as inconsequential.

Second, there has been an omission of certain non-l
terms in the conformally invariant portion of the effectiv
action @as discussed after Eq.~4!; also see Ref.@36##. The
inclusion of these terms would likely modify the quantitativ
details of our one-loop calculations. We expect, howev
that the qualitative outcomes of this paper will persist ev
after the conformally invariant terms have been rigorou
5-10
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dealt with. That is, we anticipate that extremal black ho
will maintain their regular behavior when the methodolo
of Sec. V is applied, whereas the singularities arising in
extremal limit ~of the non-extremal calculations! will perse-
vere. To partially justify this last statement, we note that
expansion based on ‘‘covariant perturbation theory’’~the
process by which the relevant terms have been derived! is
only expected to be valid when the derivative of the cur
ture is much larger than the curvature itself@44#. This ap-
pears to be an appropriate condition with respect to~for in-
stance! the reduced Reissner-Nordstro¨m black hole;
however, this is not the case for the reduced BTZ black h
which is essentially a theory of constant-curvature gravit
-

k

,

. D

n-

ck

v

ev
.

u
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It is our hope that the above issues will be formally a
dressed in a future work. In any event, the techniques of
current analysis should prove useful in subsequent studie
both extremal and non-extremal black hole thermodynam
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